气井缓蚀剂厂家
免费服务热线

Free service

hotline

010-00000000
气井缓蚀剂厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

150m3d生活污水处理设备厂家《资讯》

发布时间:2020-08-20 11:27:09 阅读: 来源:气井缓蚀剂厂家

150m3/d生活污水处理设备厂家

核心提示:150m3/d生活污水处理设备厂家,本设备可用于:生活污水、医疗污水、洗涤污水、餐饮污水、屠宰污水、食品加工污水、喷涂污水等各种高低难度的污水处理。我们有大量的、设备型号齐全的污水设备,欢迎各位新老客户选购150m3/d生活污水处理设备厂家

当溶解氧为0.5、1.5、2.5 mg ·L-1时, N2O的释放量占进水总氮的比例分别为4.35%、3.27%、2.63%, 由数据可知, 当溶解氧为0.5 mg ·L-1时, N2O的释放量占进水总氮的比例最大, 而当溶解氧为2.5 mg ·L-1时, N2O的释放量占进水总氮的比例最小.随着溶解氧浓度的升高, N2O的释放量占进水总氮的比例逐渐减少. Law等在小试短程硝化SBR反应器内处理合成废水, 控制溶解氧浓度为2.5~3 mg ·L-1, 得出N2O的释放量占进水总氮的比例为1%. Kampschreur等[4]在中试连续流SBR反应器内处理废水, 控制溶解氧浓度为1.0 mg ·L-1, 得出N2O的释放量占进水总氮的比例为3.4%. Desloover等研究短程硝化过程中N2O的产生机制, 控制溶解氧浓度为0.2~0.4 mg ·L-1, 得出N2O的释放量占进水总氮比例为5.1%~6.6%, 其中45%~47%的NH4+-N氧化为NO2--N, 13%~15%的NH4+-N氧化为NO3--N.可见, 随着溶解氧的升高, N2O的释放量占进水总氮的比例逐渐减少, 此外, 由于工艺类型和运行条件不同, 不同研究者得出N2O的释放量占进水总氮比例也不同.溶解氧浓度不同而产生N2O释放量差异的原因可能是由于高溶解氧条件下, AOB利用亚硝酸盐进行好氧反硝化作用减弱, 而溶解氧浓度较低时通常会促进AOB反硝化反应而积累N2O.基于以上试验结果, 从提高污水脱氮效率, 降低N2O产生量来考虑, 短程硝化过程控制溶解氧在2.5 mg ·L-1既可以提高比氨氧化速率, 又可以减少N2O的产生.图 7 N2O的释放量占进水总氮的百分比

2.2 不同溶解氧条件下N2O产生途径  现有的大量研究表明, 污水生物脱氮过程中微生物的硝化及反硝化代谢过程是污水处理中N2O的主要产生途径, 如表 1所示.  表 1 污水生物脱氮过程已知的N2O产生与消耗途径  Yoshida等提出可以通过分析N2O分子内15N含量, 推测生物脱氮过程N2O产生途径.通过对稳定同位素比质谱仪将线性结构的N2O气体分子离子化后产生的N2O+和NO+离子片段进行定量分析, 计算15N在α位和β位的丰度, 最终通过SP值判断N2O产生途径.由于N2O的SP值与基质的同位素组成无关, 因此SP值可以作为判断N2O产生途径的有力依据. 当溶解氧为0.5、1.5、2.5 mg ·L-1时, 分别对短程硝化批次试验中收集的气体进行稳定同位素测定, 得到N2O气体的SP值, 从而判断反应过程N2O产生途径, 结果如表 2所示  表 2 不同溶解氧条件下短程硝化同位素测定结果  已有研究表明, 假定NH2OH氧化过程生成的N2O气体的SP值(SPNN)平均为28.5‰和硝化细菌反硝化过程生成的N2O气体的SP值(SPND)平均为-2‰.计算结果见表 2, 从中可知, 当溶解氧为0.5 mg ·L-1时, 只有AOB反硝化过程生成N2O.由于低溶解氧可能发生异养菌反硝化作用, 而本研究短程硝化前30 min基本没有检测到N2O, 因此, 没有发生异养菌反硝化作用产生N2O.当溶解氧升至1.5 mg ·L-1时, 有4.52%的N2O通过NH2OH氧化过程生成, AOB反硝化过程生成的N2O占95.48%.继续升高溶解氧到1.5 mg ·L-1时, NH2OH氧化过程生成的N2O比例增加至9.11%, AOB反硝化过程生成的N2O占90.89%. Wunderlin等利用同位素技术研究混合菌系统产生N2O特征得出, 在溶解氧大于1 mg ·L-1和NH4+-N浓度大于10 mg ·L-1时, NH2OH氧化过程产生N2O的比例占N2O产生总量的25%.本研究在溶解氧为1.5 mg ·L-1和2.5 mg ·L-1时, 均有NH2OH氧化过程产生N2O.可见, 溶解氧的改变会影响短程硝化过程N2O的产生途径.随着溶解氧的升高, AOB反硝化过程产生N2O占NH2OH氧化过程产生N2O的比例减少, 但是90%以上的N2O仍然是通过AOB反硝化过程产生.当溶解氧浓度为2.5 mg ·L-1, 测定结果如图 5所示.反应经过120 min, NH4+-N浓度由24.4 mg ·L-1降至3.38 mg ·L-1, 80.3%的NH4+-N转化为NO2--N, 亚硝积累率为95.43%, 比氨氧化速率为3.75 mg·(g· h)-1, SAOR约为低溶解氧(0.5 mg ·L-1)条件下的2.02倍, 可见较高的溶解氧具有更高的SAOR, 短程硝化反应时间随着溶解氧的增加明显缩短.从图 5中可以看出, 随着反应进行, 前30 min, 基本没有溶解态N2O和气态N2O的产生, 当反应到30 min后, 溶解态N2O浓度逐渐增加, 到120 min达到最大值为0.21 mg ·L-1.前30 min, 气态N2O浓度较少, 当NO2--N浓度大于3 mg ·L-1, 气态N2O的体积分数快速升高, 到240 min, 达到261.3×10-6.可见, 不同DO浓度条件下, N2O的产生量不同, 但总体变化趋势相同.利用SPSS软件对NO2--N浓度和N2O浓度与进行Pearson相关系数分析, 得出在0.01水平(双侧)上显著相关, 相关性系数R2=0.974, 显著性P=0.003(P < 0.05), 表明与低溶解氧条件一致, NO2--N浓度与N2O的释放显著相关.

图 5 单周期内NH4+-N、NO2--N、NO3--N及N2O变化情况  可见, 不同的溶解氧条件下, 均有一定浓度的N2O产生, NO2--N浓度又是N2O产生的主要影响因素.而短程硝化过程不可避免地导致亚硝酸盐积累, 短程硝化工艺有着广泛的应用前景, 现在已经在一些污水处理厂得到广泛应用并取得了良好的效果.通过短程硝化结合厌氧氨氧化工艺实现一体化, 可以控制亚硝酸盐浓度在较低的水平, 此外, 对于两段式短程硝化-厌氧氨氧化工艺, 可以通过控制半短程硝化, 即一半的氨氮氧化为亚硝酸盐, 进入厌氧氨氧化反应器内, 可以减少亚硝酸盐浓度, 从而减少N2O的产生.因此, 通过设计合理的工艺来控制反应器中的亚硝酸盐浓度, 对控制N2O的总产量有着重要的作用.  不同溶解氧条件, 短程硝化过程N2O释放量如图 6所示.溶解氧浓度分别为0.5、1.5、2.5 mg ·L-1时, 处理1 g NH4+-N释放的N2O量分别为51.7、34.64和28.10 mg.随着溶解氧的升高, 去除单位质量浓度NH4+-N后N2O的释放量有逐渐降低的趋势, 可见, DO浓度对N2O的产生与释放有重要的影响, DO浓度在0.5 mg ·L-1将导致N2O产生量升高, 而较高的DO浓度有利于降低N2O的产生量.刘秀红等[22]采用SBR反应器, 研究不同的溶解氧浓度对生物脱氮过程中N2O产量的影响, 结果表明, 当溶解氧浓度大于1.5 mg ·L-1后, 随着溶解氧浓度的升高N2O产量开始迅速降低.本研究溶解氧大于1.5 mg ·L-1时, N2O的释放量也开始降低, 与其研究结果相同.巩有奎等对短程反硝化过程中N2O的产生机制进行了分析, 结果表明高浓度的溶解氧对N2O还原酶具有较强的毒性, 会抑制N2O的进一步还原.图 6 去除单位质量浓度NH4+-N后N2O的释放量在不同溶解氧条件下, 对短程硝化过程中溶解态N2O和气态N2O进行监测, 当溶解氧浓度为0.5 mg ·L-1, 测定结果如图 3所示.反应经过240 min, NH4+-N浓度由23.5 mg ·L-1降至2.78 mg ·L-1, 63.5%的NH4+-N转化为NO2--N, 亚硝积累率(NAR)为90.43%, 比氨氧化速率(SAOR, 以N/SS计, 下同)为1.86mg ·(g ·h)-1.从图 3中可以看出, 随着反应进行, 前30 min, 溶解态N2O和气态N2O基本没有检测到, 仅有0.875 mg ·L-1的NO3--N产生, 此过程产生这种现象可能是由于曝气的开始阶段, 微生物进行异养呼吸, 使COD和少量NH4+-N消耗合成自身物质.当反应到30 min之后, 溶解态N2O的浓度逐渐增加, 到120 min达到最大值, 随后趋于平缓并开始下降.前60 min, 气态N2O的浓度增加较少, 到120 min, NO2--N浓度大于5 mg ·L-1, 气态N2O的体积分数快速升高, 反应进行到240 min, 达到320.5×10-6, 利用SPSS软件对NO2--N浓度和N2O浓度与进行Pearson相关系数分析, 得出在0.01水平(双侧)上显著相关, 相关性系数R2=0.947, 显著性P=0.004(P < 0.05), 表明NO2--N浓度对N2O的释放有很大关系.有研究表明[20], 短程硝化过程N2O释放量的急剧上升与体系中NO2--N的积累存在显著的相关性, NO2--N具有生物毒性, NO2--N的积累导致氧化亚氮还原酶的活性降低, 从而引起N2O的释放.

万达华府

龙湖拉特芳斯

国创光谷上城装修效果图

温泉新都孔雀城